

1

Fission

Fission - Before

Before the neutron "falls" into the U-235 nucleus:
235 bound particles, average mass 1.000 u each
1 free neutron with a mass of about 1.009 u

→total mass about 236.009 u

Fission - After

After: →234 or 233 particles (two fragments) 0.999 u each \rightarrow 2 or 3 free neutrons (typical): mass 1.009 u each \rightarrow Some gamma rays (no mass) →total mass about 235.8 u **~** → The missing mass (0.2 u \approx 200 MeV) shows up mostly as

Where does the energy come from?

$E = mc^2$

Mass "Disappears" and Energy Appears in its place.

Chain Reaction

Controlled Chain Reaction

Neutron Multiplication Factor

$k = \frac{\text{number of neutrons in this generation}}{\text{number of neutrons in the previous generation}}$

Reactivity $\rho = \frac{k-1}{k} = \frac{\Delta k}{k}$

Units of Reactivity $1 \text{ mk} = 10^{-3} \rho$ $1 \text{ pcm} = 10^{-5} \rho$

Where do neutrons come from?

→Induced Fission

Delayed Neutrons

Where do more neutrons come from?

V-238

Spontaneous Fission

Induced Fission •Most of the neutrons at high power 099.35% of all neutrons O Delayed Neutrons •Half-lives up to about 1 minute **ODelay changes in power** • 0.65% of neutrons O Photo-neutrons •A decade less than delayed neutrons ohold power to about 5x10⁻⁵ FP after 1 day shutdown **OLONGEST lived decay chain with 2.2** MeV gammas is 15 days OUsually considered part of the source neutrons

Even more about neutrons

Camel Curve

Neutron Energies

- Fast
- Slow or thermal
- Epi-thermal

Fast

Spectrum of fission neutrons 1-10 MeV, 2 MeV is typical

Slow or thermal

Slowed to thermal equilibrium

→0.0253 eV at 20°C

Epi-thermal

anything in between

Cross Sections

- Probability of a specific nuclear reaction
- Depends on
 - → reaction
 - → target nucleus
 - neutron energy

Cross sections vary with neutron energy

U-235 to a fast neutron

U235 to an epi-thermal neutron

Cross sections vary with target nucleus

U-238 to a slow neutron

U235 to slow neutron

Cross sections vary with specific reaction

Resonance Capture

Effect of Enriching Fuel

0.7 % U-235

2-4% U-235

Chance of a neutron capture in fuel causing a fission is much increased.

Reactors with enriched fuel do not need to return as many atoms to the fuel to achieve criticality